metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrey V. Gerasimenko,^a Ruven L. Davidovich,^a Ion G. Bulimestru,^b Aurelian P. Gulea^b and Seik Weng Ng^c*

^aInstitute of Chemistry, Far East Division, Russian Academy of Sciences, 690022 Vladivostok, Russia, ^bDepartment of Chemistry and Chemical Technology, Moldova State University, MD2009 Chisinau, Moldova, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.003 Å R factor = 0.033 wR factor = 0.090 Data-to-parameter ratio = 23.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(µ-salicylaldehyde semicarbazonato)bis[formatocopper(II)]

The salicylaldehyde semicarbazonate anion O,N,O-chelates to the Cu atom in the title compound, bis[μ -2-(semicarbazonomethyl)phenolato]-1 $\kappa^3 O^3, N^1, O$:2 κO ;1 κO :2 $\kappa^3 O^3, N^1, O$ -bis-[(formato- κO)copper(II)] [Cu₂(C₈H₈N₃O₂)₂(CHO₂)₂], the N and O atoms occupying three sites of the square-planar environment around it. The fourth site is occupied by the negatively charged O atom of the formate anion. Two molecules are bridged through the phenoxy O atom across a center of symmetry to give a dinuclear compound, so that the Cu atom exists in a square-pyramidal geometry [Cu \leftarrow O_{phenoxy} = 2.546 (1) Å in the apical position]. Hydrogen bonds link the dinuclear molecules into a three-dimensional network architecture.

Comment

Only a very small number of metal complexes of the terdentate Schiff base that is formed by condensing salicylaldehyde with semicarbazide have been crystallographically authenticated; the complexes of salicylaldehyde semicarbazone, which is an approximately planar molecule (Valdes-Martinez *et al.*, 1990), are limited to the vanadium derivative, *cis*-dioxo(salicylaldehyde semicarbazonato)vanadium(V) (Noblia *et al.*, 2004) and the copper derivatives monomeric (chlorosalicylaldehyde semicarbazonato)copper dihydrate (Patole *et al.*, 2001; Samus' *et al.*, 1990) and diaqua(salicylaldehyde semicarbazonato)copper, aqua(salicylaldehyde semicarbazonato)(dimethylformamide)copper sulfate trihydrate (Chumakov *et al.*, 1996).

In the title compound, (I), the negatively charged formate O atom is linked to the O,N,O-chelated Cu atom, the N atom and three O atoms comprising a basal square plane around the Cu atom. Two molecules are bridged through the phenoxy O atom to form a dinuclear species across a center of inversion (Fig. 1). The symmetry-related phenoxy O atom occupies the apical position of the resulting square pyramid, and the bridging Cu $-O_{phenoxy}$ bond is significantly longer than both

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 11 August 2005 Accepted 12 August 2005 Online 20 August 2005

 $w = 1/[\sigma^2(F_0^2) + (0.0459P)^2]$

+ 0.5822*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}$

Figure 1 *ORTEPII* plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 70% probability level [symmetry code: (i) 1 - x, 1 - y, 1 - z].

the covalent $Cu-O_{phenoxy}$ and $Cu-O_{carbonyl}$ bonds in the basal plane. Adjacent dinuclear units are linked by hydrogen bonds (Table 2) to form a three-dimensional network.

The salicylaldehyde–glycine dianion, which possesses bonding features similar to those of the salicylaldehyde semicarbazone monoanion, has been shown to bind to copper(II) as a terdentate chelate; the dimeric nature of the urea adduct also arises from bridging by the phenoxy O atom in that square-pyramidal compound (Valenta *et al.*, 2002).

Experimental

Salicylaldehyde semicarbazone (1.07 g, 6 mmol) was dissolved in hot ethanol (100 ml) and copper sulfate pentahydrate (1.50 g, 6 mmol) in water (10 ml). The aqueous solution was added to the ethanol solution and the mixture kept at 313–323 K for 30 min. The pale-green precipitate of bis[aqua(salicylaldehyde semicarbazonato)copper] sulfate dihydrate, (II), was collected and washed with ethanol (yield: 90%). (II) (0.34 g, 0.5 mmol) was dissolved in water (50 ml) and to this solution was added a large excess (10 ml) of formic acid. Dark-green crystals of (I) separated from the mixture within an hour in about 80% yield. Elemental analysis calculated for $C_{18}H_{18}Cu_2N_6O_8$: C 37.70, H 3.14, N 14.66%; found: C 37.53, H 3.02, N 14.60%.

Crystal data

$\begin{bmatrix} \text{Cu}_2(\text{C}_8\text{H}_8\text{N}_3\text{O}_2)_2(\text{CHO}_2)_2 \end{bmatrix}$ $M_r = 573.46$ Monoclinic, $P2_1/n$ a = 7.7562 (5) Å b = 14.1641 (8) Å c = 9.6837 (6) Å $\beta = 102.743$ (1)° V = 1037.6 (1) Å ³ Z = 2	$D_x = 1.835 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1754 reflections $\theta = 2.6-32.0^{\circ}$ $\mu = 2.11 \text{ mm}^{-1}$ T = 173 (2) K Prism, green $0.33 \times 0.11 \times 0.07 \text{ mm}$
Data collection	
Bruker SMART 1000 area-detector diffractometer φ and ω scans Absorption correction: multi-scan	3551 independent reflections 2997 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 32.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$

 $k = -21 \rightarrow 20$

 $l = -14 \rightarrow 14$

(*SADABS*; Sheldrick, 1996) $T_{min} = 0.675, T_{max} = 0.866$ 13226 measured reflections Selected geometric parameters (Å, °).

Refinement

Refinement on F^2

 $wR(F^2) = 0.090$

3551 reflections

154 parameters

S = 1.04

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.033$

H-atom parameters constrained

1.918 (1)	Cu1-O3	1.922 (1)
2.546 (1)	Cu1-N1	1.923 (1)
1.976 (1)		
86.90 (5)	O1 ⁱ -Cu1-O3	96.57 (5)
174.84 (5)	O1 ⁱ -Cu1-N1	96.11 (5)
89.97 (5)	O2-Cu1-O3	95.16 (5)
93.19 (6)	O2-Cu1-N1	81.67 (5)
93.10 (5)	O3-Cu1-N1	167.07 (6)
	1.976 (1) 86.90 (5) 174.84 (5) 89.97 (5) 93.19 (6)	$\begin{array}{cccc} 2.546 & (1) & Cu1-N1 \\ 1.976 & (1) & & \\ \\ 86.90 & (5) & O1^{i}-Cu1-O3 \\ 174.84 & (5) & O1^{i}-Cu1-N1 \\ 89.97 & (5) & O2-Cu1-O3 \\ 93.19 & (6) & O2-Cu1-N1 \end{array}$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1.

Table 2				
Hvdrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
N2-H2 n ···O4 ⁱⁱ	0.88	2.05	2.804 (2)	143
$N3-H3n1\cdots O4^{iii}$	0.88	2.09	2.931 (2)	159

Symmetry codes: (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z.

H atoms were placed at calculated positions $[C-H = 0.95 \text{ Å}, N-H = 0.88 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C,N)]$ and were included in the refinement in the riding-model approximation.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976).

The authors thank the Institute of Chemistry of the Far East Division of the Russian Academy of Sciences, Moldova State University and the University of Malaya for supporting this study.

References

- Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chumakov, Yu. M., Tsapkov, V. I., Biyushkin, V. N., Mazus, M. D. & Samus', N. M. (1996). Kristallografiya, 41, 873–878.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Noblia, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., Gonzalez, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). *Eur. J. Inorg. Chem.* pp. 322–328.
- Patole, J., Dutta, S., Padhye, S. & Sinn, E. (2001). *Inorg. Chim. Acta*, **318**, 207–211.
- Samus', I. D., Taran, G. G., Mazus, M. D., Tsapkov V. I. & Samus', N. M. (1990). Koord. Khim. 16, 1067–1071.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Valdes-Martinez, J., Toscano, R. A., Salcedo, R., Cea-Olivares, R. & Melendez, A. (1990). Monatsh. Chem. 121, 641–647.
- Valenta, A., Melník, M., Hudecová, D., Dudová, B., Kivekä, R. & Sundberg, M. R. (2002). Inorg. Chim. Acta, 340, 15–20.